9:	6				:
4:	(-)	:		:
$_{1},\;\mathrm{IN*-}\{1\}$ عددا من			نرمز ب(σ(n لمجموع م ااموجبة للعدد n وب+P	σ(n) لمجموع القواس	نرمز ب(
			$\forall p \in P^+ : c$	$\sigma(p^{\alpha}) = \frac{p^{\alpha+1}}{p-1}$	1) بين أز
. σ(2	$(x) = \prod_{i=1}^{n} \frac{p_i^{\alpha_{i+1}} - 1}{p_i - 1}$	x - بين أن :	لجداء عوامل أولية للعدد	$\mathbf{x} = \prod_{i=1}^{n} \mathbf{P}_{i}^{\alpha_{i}}$ التفكيك	2) ليكن:
			$\mathrm{IN}^* - \{\!1\!\}$ دين من		
	. σ(r	n) = 2nل إذا كان	II , نقول إن العدد n كام		
	\mathbf{r}^{n} 1 \mathbf{r} \mathbf{D}^{+}	··	$M_n = 2^n - 1$ إذا كان $x \ge 2$ و $x \ge 3$		
	.X -1∉P		بحيب د∠ x و 2 ≤ x ∏. بين أن +P ∋ 1 − 1.		`
		, -		ماری کردی میری از کاری میری از کاری میری از کاری از کاری میری از کاری کاری کاری کاری کاری کاری کاری کاری	`
		A	$N_{p} = 2^{p-1} (2^{p} - 1)$	عددا من \mathbb{N}^* نض عددا	III- لیکن
			ل فإن p أولي.	ه إذا كان ${ m N}_{ m P}$ عدد كاما	*
		ava b. n =	من *IN بحيث: 2ª.b	n عدد زوجي کامل. أنه به عدد عددين م م ط	
	$\sigma(b) = 2^{a+1}$	W 2	$(a^{a+1}-1)c$ بحیث: $(a^{a+1}-1)$		
			,	. $c=1$ أن	
				3 :	
a∈		2, 50	$C - \{a\}$ نحو		
		- , ,	$ \mathbf{z} ^2 \mathbf{R}_{e}(\mathbf{a}) = \mathbf{a} ^2 \mathbf{R}$	- ` '	
	- ,		z-a =	, ,	
	`		$arg(f_a(z)-a) \circ a $		
) المجموعات التالية :	ی م.م.م.م (O, u, V	, ,	a ونعتبر في المستوى $\left(f_{a}\left(z\right) \in i\ \mathrm{IR} ight) $ و		
Office		$(D) = \langle$	$\left\{ M(z) / \arg(f_a(z) - a \right\}$	$) \equiv \frac{3\pi}{4} [2\pi] $	
محددا معادلة $A(a)$	محروم من النقطة (A(a) متقيم طرفه	و بین أن $ig(\mathrm{D} ig)$ نصف مس		
	(D) \cap (σ) ه	بحيث B تنتمي إل	ر النقطة $f B$ ذات اللحق $f z_{ heta}$	ر $\mathrm{C}-\left\{ \mathrm{a} ight\}$ من $z_{ heta}$	
			z_{θ} جبري ثم اشتنتج	•	
			في المعلم (U, u, v).	(D) و (E) و (σ)	ت-انسىء

. $a\perp b=a+b-ab\sqrt{2}$: نضع E^2 نضع . $E=IR-\left\{\frac{1}{\sqrt{2}}\right\}$ نتكن (E=IR $a \perp b = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \left(a\sqrt{2} - 1 \right) \left(b\sqrt{2} - 1 \right)$: E^2 من (a,b) من = 1. بين أن (E, \perp) زمرة جزئية تبادلية (E, \perp) حلقة واحدية $(M_{_2}(IR),+,\times)$ مي مجموعة المصفوفات المربعة من الرتبة 2 . ندكر أن $M_{_2}(IR)$ حلقة واحدية وحدتها $I=egin{pmatrix} 1 & 0 \ 0 & I \end{pmatrix}$ و أن $M_2(IR),+,ullet$ فضاء متجهي حقيقي . لتكن $I=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$ فضاء متجهي حقيقي $A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \text{ نضع } : a \in E \text{ نضع } M\left(a\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} - a & a \\ a & \sqrt{2} - a \end{pmatrix} : \text{ نضع } M_2\left(IR\right)$. $M(a) = I + \frac{a}{\sqrt{2}}$. $A : وأن : A^2 = -2A : 1$. $(M_2(\mathit{IR}), \times)$ ب - بین أن F : بین أن $\varphi:(E,\bot)\to(F,\times)$ 2 – نعتبر التطبيق: $a \rightarrow \varphi(a) = M(a)$ أ - بين أن φ تشاكل تقابلي . (F,\times) بنية (F,\times)

للا جتياز أحد الإمتحانات الشفوية ويسحب المرشح سؤالا واحدا من بين 9 أسئلة موزعة على الشكل التالى:

- 3 أسئلة في الرياضيات - 4 أسئلة في الفيزياء - سؤالان في الطبيعيات . نفترض أن جميع الأسئلة لها نفس آ حتمال السحب و أن آحتمال أن يعطي المرشح جوابا صحيحا إداكان السؤال في

الرياضيات هو $\frac{4}{10}$ و آحتمال أن يعطي المرشح جوابا صحيحا إدا كان السؤال في المادتين الأخرتين هو $\frac{9}{10}$

1) أحسب أحتمال الأحدات التالية:

" المرشح يعطى جوابا صحيحا للسؤال الدي يسحبه " A

B " السؤال المسحوب وفي الرياضيات و المرشح لا يعطي جوابا صحيحا "

" السؤال المسحوب ليس في الرياضيات و المرشح يعطى جوابا صحيحا "

2) علما أن المرشح أعطى جوابا صحيحا للسؤال, ما هو الإحتمال q لكي يكون السؤال في

3) نفتر ض أن خمسة متر شحين تقدمو آ لإجتياز هدا الإمتحان بنفس المعطيات السابقة الدكر . أحسب إحتمال أن يتوفق 3 مرشحين فقط من بين هؤلاء المرشحين الخمسة .

n عدد صحيح طبيعي أكبر أو يساوي 1.

 $g_n(x) = 1 + x - e^{-nx}$: يما يلى IR بما يلى الدالة العددية g_n المعرفة على IR

اً ا درس تغيرات الدالة g_n .

. g_n و أعط جدول تغيرات و $\lim_n g_n(x)$ و أعط جدول تغيرات و أ

. أحسب $\lim_{x \to \infty} \frac{g_n(x)}{x}$ ثم أول هندسيا النتيجة المحصل عليها

ث - أحسب $x-1 - im g_n(x)$ ثم أول هندسيا النتيجة المحصل عليها .

 $g_n(x)=0$ ج – آ ستنتج أن $x_0=0$ هو الحل الوحيد للمعادلة

ح - مثل مبيانيا الدالة g_1 في م.م.م.

 $g_{n+1}(x)-g_n(x)$ ب – أدرس إشارة

. تاقصية (x_n) تاقصية تاقصية - ت

 $(\forall n \geq 1)$ $x_n = e^{-nx_n}$: ن بين أ ن - ث

. $(x_n)_{n\geq 1}$ ج - آستنتج نهایة المتتالیة

 $\forall n \in IN *; y_{n+1} = e^{-y_n}$ و y_1 : المعرفة كما يلي المعرفة $\left(y_n\right)_{n>1}$

 $\frac{1}{2} \leq x_1 \leq 1$ و أن $e^{-x} = x$ و الحل الوحيد للمعادلة x_1

 $\forall n \in IN^*$; $\frac{1}{e} \leq y_n \leq 1$ (2)

 $\forall n \in IN^*$; $|y_{n+1} - x_1| \le e^{-\frac{1}{e}} |y_n - x_1|$: بين أن ياب - بين أن ياب - بين أن ياب أن ياب

 $t - m_{tritic}$ $t - m_{tritic}$ t -