Série: Sr7-Fr

Exercice

1.

Maths-inter.ma

التمرين

Partie: I

Soit f une fonction continue sur IR et u et v deux fonctions dérivables sur IR. On considère la fonction G définie par : $G(x) = \int_{U(x)}^{V(x)} f(t)dt$

- 1) Montrer que G est dérivable sur IR.
- 2) Donner l'expression de G'(x)

Partie: II

Soient f et F deux fonctions définies sur IR par :

$$f(x) = x^4 e^{-4x^4}$$
 et $F(x) = \int_x^{1+x^2} f(t) dt$

et On pose, pour tout $x \ge 1$; $I(x) = \int_{x}^{2x} \frac{f(t)}{t} dt$

1)

- a) Montrer qu'il est possible de réduire le domaine de définition de F à un intervalle d'étude D_E et étudier les variations de F sur D_E .
- b) En déduire que pour tout x réel :

$$(\forall x \in IR)$$
 ; $f(x) \le \frac{1}{4e}$

2)

- a) Calculer l'expression de la fonction dérivée F'(x)
- b) En déduire que : $(\forall x \in [0,1])$; $|F(x)| \le \frac{3}{4e}$
- 3) Montrer que : $(\forall x \in [0,1])$; $0 \le F(x) \le 1$
- 4) Montrer qu'il existe un réel $x_0 \in [0,1[$; $F(x_0) = x_0$
- 5) Soit (U_n) la suite définie par $\begin{cases} U_0 = 0 \\ U_{n+1} = F(U_n) \end{cases}$
 - a) Montrer que : $(\forall n \in IN)$; $U_n \in [0,1]$
 - b) Montrer que : $(\forall n \in IN)$; $|U_{n+1} x_0| \le \frac{3}{4e} |U_n x_0|$
 - c) En déduire que (U_n) est convergente et calculer sa limite.

02/09/2017

Bonne Chance

E-mail: ammari1042@gmail.com

Tel: 0649113323