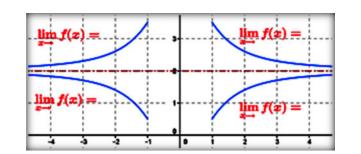
Branches infinies 1ère & 2ème Bac Page: 1/1

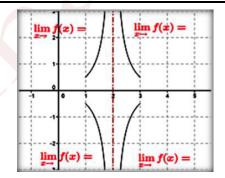
Si: $\lim_{x \to a} f(x) = b$

Si: $\lim_{x \to \infty} f(x) = \pm \infty$

Si: $\lim_{x \to \infty} f(x) = \pm \infty$



La droite (Δ) : y = ax + b est une Asymptôte oblique à (C_f) signifie que : $\lim_{x\to\infty} (f(x) - (ax + b)) = 0$



La droite (Δ) d'équation y = b est une Asymptôte à (C_{ϵ}) au voisinage de ∞

 (C_f) est au dessus de $(\Delta) \Leftrightarrow (f(x) - (ax + b)) > 0$ (C_f) estendessous de $(\Delta) \Leftrightarrow (f(x) - (ax + b)) < 0$

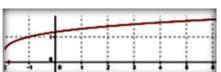
La droite (Δ) d'équation x = a est une Asymptôte à (C_t) au voisinage de a

Détermination de la nature de la branche infinie dans le cas : $\lim f(x) = \pm \infty$

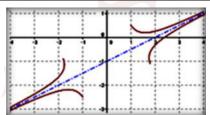
Si: $\lim_{x\to\pm\infty}\frac{f(x)}{x}=0$

Si: $\lim_{x\to\pm\infty}\frac{f(x)}{x}=a\neq 0$

Si: $\lim_{x\to\pm\infty}\frac{f(x)}{x} = \pm\infty$

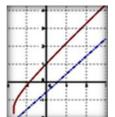


La courbe (C_f) admet une branche parabolique de direction (Ox)



 $\lim_{x\to\pm\infty} (f(x) - ax) = b$

La droite (Δ) d'équation y = ax + best une Asymptôte à (C_f) au voisinage de ∞ .



 $\lim(f(x)-ax)=\infty$

La courbe (C_f) admet une branche parabolique de direction la droite (D), d'équation y = ax

La courbe (C_f) admet une branche parabolique de direction (Oy)