$f(x) = -x + \frac{2}{x}$; $x \in]-\infty, 0[\cup]0,1[$ On considére la fonction **f** définie sur **IR*** par: $f(x) = \frac{1+x}{2\sqrt{x}}$; $x \in [1, +\infty[$

 (C_f) est la courbe représentative de la fonction f dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- a) Montrer que f est continue aux points 1. 1)
 - b) Calculer f(-2); $f(-\sqrt{2})$; f(-1); f(1); f(4)
- a) Montrer que f est dérivable à gauche au point 1. 2)
 - b) Donner l'équation de la demi tangente (Δ_1) à gauche au point 1.
- c) Etudier la dérivabilité de la fonction f à droite au point 1,et donner une interprétation géométrique du résultat obtenu.
 - c) schématiser les résultants précédents.
- a) Calculer $\lim_{x\to -\infty} \mathbf{f}(\mathbf{x})$.
 - b) Montrer que (C_t) admet une asymptote oblique (D) et déterminer son équation.
 - c) Calculer lim f(x).
 - d) Etudier la nature de la branche infinie au voisinage de $+\infty$.
 - e) Etudier la nature de la branche infinie au voisinage de 0.
 - f) compléter la schématisation précédente en traçant les branches infinies.
- a) Etudier les variations de f sur chacun des intervalles $]-\infty$, 0[et]0,1[. 4)
 - b) Etudier les variations de f sur l'intervalles $[1, +\infty]$.
 - c) Dresser le tableau de variations de f.
- a) Donner l'équation de la tangente (Δ_2) au point $-\sqrt{2}$.
 - b) compléter la schématisation précédente en traçant la tangente (Δ_2) .
- Tracer (D), (Δ_1) , (Δ_2) et la courbe (C_f) dans le repère (C_f) . 6)
- Soit U la restriction de f à l'intervalle $-\infty$; 0 [. 7)
 - a) Montrer que U admet une bijection réciproque $U^{\text{-}1}$ définie sur un intervalle J_1 qu'on déterminera.
 - b) Calculer $U^{-1}(x)$ pour tout x de l'intervalle J_1 .
 - c) Calculer $(U^{-1})(0)$.
- Soit V la restriction de f à l'intervalle $[1, +\infty]$.
 - a) Montrer que V admet une bijection réciproque V^{-1} définie sur un intervalle J_2 qu'on déterminera.
 - b) Calculer $V^{-1}(x)$ pour tout x de l'intervalle J_2 .
 - c) Calculer $\left(V^{-1}\right)\left(\frac{5}{4}\right)$
- Tracer $(C_{U^{-1}})$ et $(C_{V^{-1}})$ dans le même repère $(O; \vec{i}; \vec{j})$.