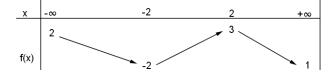
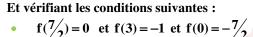

+∞


Maths-inter.ma

On considère la fonction f, définie par son tableau de variations suivant :

Et vérifiant les conditions suivantes :


- f(-4) = 1 g(4) = 3/2 g(1/2) = 1
- (C_f) admet une tangente horizontale au point -2.

- (C_f) admet une demi tangente horizontale à gauche au point 2, admet une demi tangente verticale à droite au point
- Déterminer D_f . 1)
- Déterminer $f(-\infty, -2)$ et f(-2, 2) et f(-2, 2)
- Construire (C_f) dans un repère orthonormé (C_f, \vec{i}, \vec{j}) .
- Déterminer les équations des asymptôtes de (C_f) au voisinage de $+\infty$ et au voisinage de $-\infty$.
- Donner les coordonnées des points d'intersection A et B $de(C_f)$ avec l'axe des abscisses.
- Donner les coordonnées du point d'intersection C de (C_f) avec l'axe des ordonnées.
- Déterminer graphiquement l'ensemble solution de l'inéquation $f(x) \le 0$
- Déterminer graphiquement l'ensemble solution de l'inéquation f(x) > 1.
- Donner l'ensemble solution de l'équation f(x) = 1.
- 10) Donner le nombre de solutions de l'équation $f(x) = \frac{3}{2}$.
- 11) Discuter suivant les valeurs du nombre réel m le nombre de solutions de l'équation f(x) = m.
- 12) Déterminer $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$.
- 13) Déterminer les limites suivantes : $\lim_{x \to -2} \frac{f(x) + 2}{x + 2}$ et $\lim_{x \to 2^-} \frac{f(x) 3}{x 2}$ et $\lim_{x \to 2^+} \frac{f(x) 3}{x 2}$. justifier

Exercice

On considère la fonction f, définie par son tableau de variations suivant :

- f(-4) = -3 et f(5) = 2
- (C_f) admet une tangente horizontale au point 2.
- (C_f) admet une demi tangente verticale à gauche au point -2. admet une demi tangente horizontale à droite au point -2.
- (C_f) admet une branche parabolique de direction (Ox) au voisinage de $+\infty$.
- Déterminer D_f . 1)
- Construire (C_f) dans un repère orthonormé (O, \vec{i}, \vec{j}) .
- Déterminer $f(-\infty, -2)$ et f(-4, 0) et f(-4, 0) et f(-4, 0). 3)
- Montrer value l'équation f(x) = 0, admet une solution unique α dans l'intervalle [1,2].
- Déterminer graphiquement l'ensemble solution de l'inéquation f(x) > 0.
- Donner le nombre de solutions de l'équation f(x) = -2.
- Discuter suivant les valeurs du nombre réel m le nombre de solutions de l'équation f(x) = m.
- Déterminer $\lim f(x)$ et $\lim f(x)$ et $\lim f(x)$ et $\lim f(x)$.
- Déterminer $\lim_{x \to +\infty} \frac{f(x)}{x}$. justifier
- 10) Déterminer les limites suivantes : $\lim_{x\to 2} \frac{f(x)+2}{x-2}$ et $\lim_{x\to -2^-} \frac{f(x)+1}{x+2}$ et $\lim_{x\to -2^+} \frac{f(x)+1}{x+2}$. justifier

Bonne Chance

Réalisé par : Ammari Simo Ex-Inspecteur Principal de maths

